Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures.

نویسندگان

  • D Kacy Cullen
  • Meghan E Gilroy
  • Hillary R Irons
  • Michelle C Laplaca
چکیده

Synapse formation is a fundamental process in neurons that occurs throughout development, maturity, and aging. Although these stages contain disparate and fluctuating numbers of mature neurons, tactics employed by neuronal networks to modulate synapse number as a function of neuronal density are not well understood. The goal of this study was to utilize an in vitro model to assess the influence of cell density and neuronal maturity on synapse number and distribution. Specifically, cerebral cortical neurons were plated in planar culture at densities ranging from 10 to 5000 neurons/mm², and synapse number and distribution were evaluated via immunocytochemistry over 21 days in vitro (DIV). High-resolution confocal microscopy revealed an elaborate three-dimensional distribution of neurites and synapses across the heights of high-density neuronal networks by 21 DIV, which were up to 18 μm thick, demonstrating the complex degree of spatial interactions even in planar high-density cultures. At 7 DIV, the mean number of synapses per neuron was less than 5, and this did not vary as a function of neuronal density. However, by 21 DIV, the number of synapses per neuron had jumped 30- to 80-fold, and the synapse-to-neuron ratio was greatest at lower neuronal densities (< 500 neurons/mm²; mean approximately 400 synapses/neuron) compared to mid and higher neuronal densities (500-4500 neurons/mm²; mean of approximately 150 synapses/neuron) (p<0.05). These results suggest a relationship between neuronal density and synapse number that may have implications in the neurobiology of developing neuronal networks as well as processes of cell death and regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of different culture media on optimization of primary neuronal cell culture for in vitro models assay

Background: In vitro model studies are becoming increasingly popular for experimental research designs. They include isolation and expansion of cells of a particular tissue, such as the nervous tissue which contributes to understanding the underlying mechanisms in many pathologies. It enables  the scrutinization of intracellular signaling pathways responsible for cell death. OBJECTIVES: In the ...

متن کامل

Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses.

Neuronal activity regulates the synaptic strength of neuronal networks. However, it is still unclear how diminished activity changes connection patterns in neuronal circuits. To address this issue, we analyzed neuronal connectivity and relevant mechanisms using hippocampal cultures in which developmental synaptogenesis had occurred. We show that diminution of network activity in mature neuronal...

متن کامل

Culturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media

Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...

متن کامل

Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions

Objective(s): Umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) are ideally suited for use in various cell-based therapies. We investigated a novel induction protocol (NIP) to improve the neuronal differentiation of human UCB-MSCs under appropriate conditions. Materials and Methods: This experimental study was performed in Iranian Blood Transfusion Organization (IBTO), Tehran, I...

متن کامل

Increased bcl-2 Protein Levels in Rat Primary Astrocyte Culture Following Chronic Lithium Treatment

Background: B cell CLL/lymphoma 2 protein, bcl-2, is an important anti-apoptotic factor that has been implicated in lithium’s neuroprotective effect. However, most studies have focused on assessing the effects of lithium in neurons, ignoring examination of bcl-2 in astrocytes, which also influence neuronal survival and are affected in bipolar disorder. The aim of this study was to evaluate whet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1359  شماره 

صفحات  -

تاریخ انتشار 2010